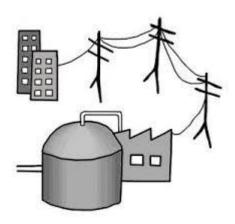
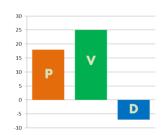

Fachseminar der KOWA MV – 20.02.2014 in Grevesmühlen


Aspekte der Energiewirtschaft bei der Abwasser- und Schlammbehandlung

Bilanzen

Effekte


Inhalt

- 1. Problembeschreibung
- 2. CSB Bilanz als Betrachtungsgrundlage
- 3. Energiegehalt des Abwassers
- 4. Bedeutung des Primärschlamms
- 5. Folgen der aeroben Schlammstabilisierung
- 6. Rohschlammqualität und Faulbehälterbewirtschaftung

Problembeschreibung

 Energieverbrauch bei der Abwasser- und Schlammbehandlung ist größer als der nutzbare Energiegehalt des Abwassers.

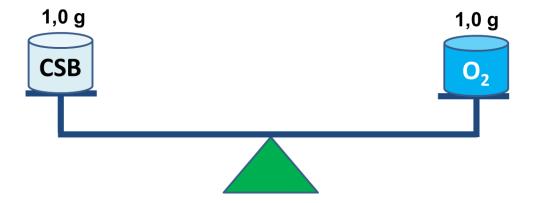
- → Energiebilanz einer Kläranlage ist negativ
- Ist es möglich die Energiebilanz zu verbessern und gleichzeitig einen wirtschaftlichen Vorteil zu erzeugen?
 - → Etwas weniger negativ kann sehr positiv bedeuten

- Betriebliche Eingriffe sind gewissenhaft zu bilanzieren.
 - → Nur geschlossene Bilanzkreise zeigen die Wirkung einer Änderung im Anlagenbetrieb

CSB-Bilanz als Betrachtungsgrundlage

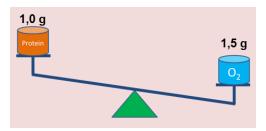
Chemischer Sauerstoffbedarf = CSB

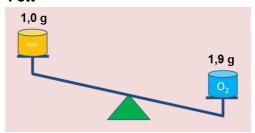
Im Abwasser und Klärschlamm gibt es eine Vielzahl von **reduzierten Stoffen** welche jeder für sich schwer bestimmbar wäre.


Oxidation spielt eine große Rolle in der Abwasser- und Schlammbehandlung.

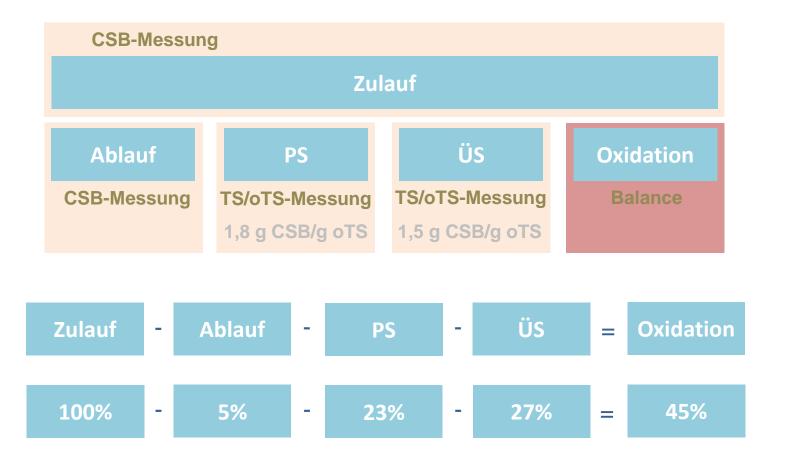
Es ist praktischer mit der **Masse an O₂** zu rechnen, welche zur Oxidation dieser Stoffe notwendig ist.

CSB-Bilanz als Betrachtungsgrundlage

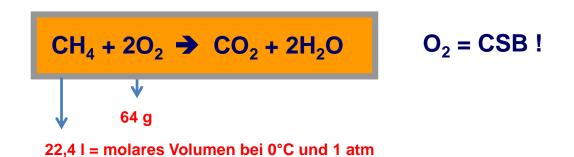

Chemischer Sauerstoffbedarf = CSB


Essigsäure

Protein

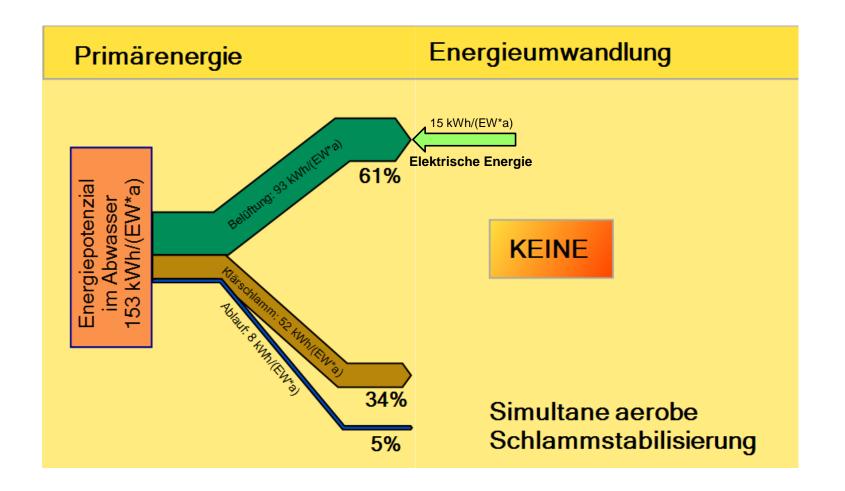


Fett

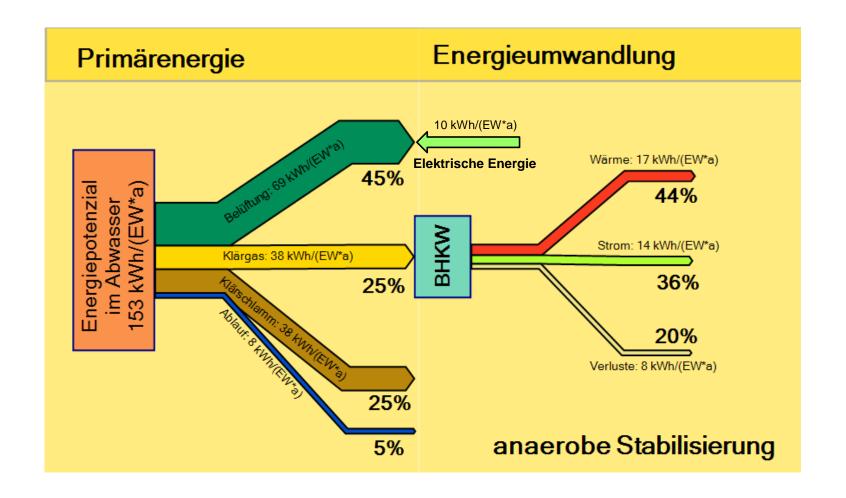


CSB-Bilanz als Betrachtungsgrundlage

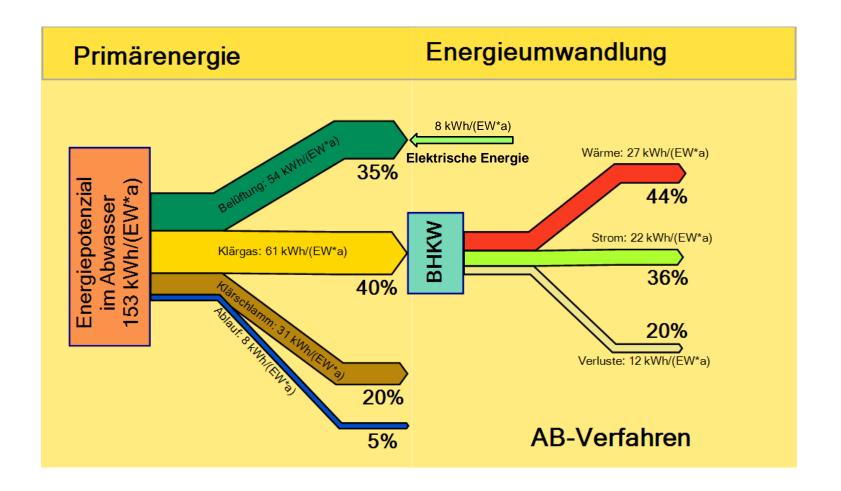
Aus der Oxidation von Methan kann Verbrauch von CSB abgeleitet werden:

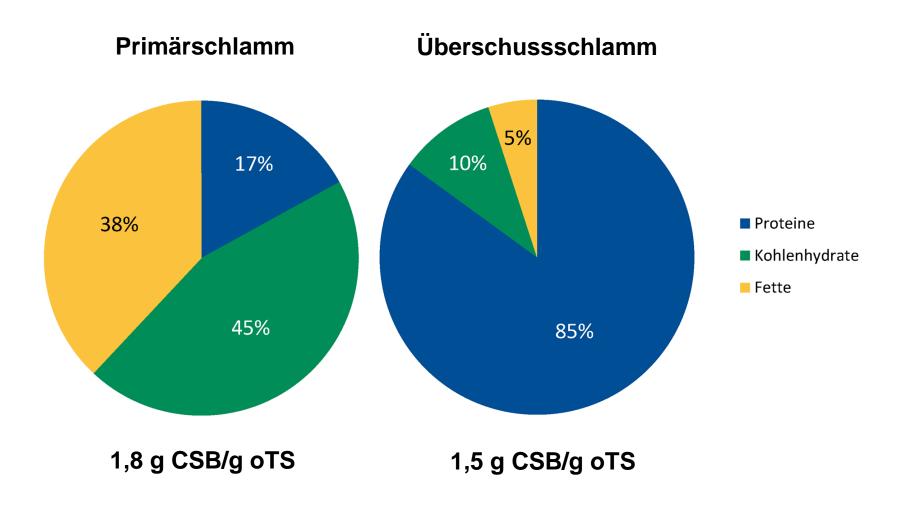


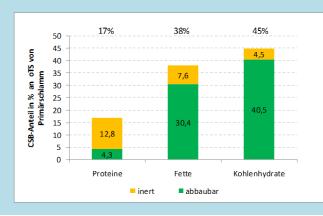
$$\frac{22,4 \text{ I CH}_4}{64 \text{ g O}_2} = 0.35 \text{ I CH}_4/\text{g O}_2 \text{ (=CSB)}$$



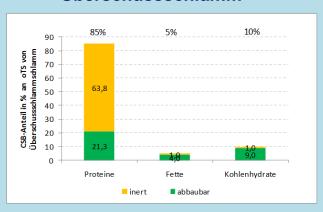
Primärenergie aus Klärschlamm


10 kWh/ Nm³ CH ₄	x 0,35 Nm³ CH ₄ /kg CSB	3,5 kWh/ kg CSB	
3,5 kWh/ kg CSB	x 0,120 kg CSB/(EW*d)* 365	153 kWh/(EW*a)	





Abbaubarkeit von Primärschlamm und Überschussschlamm


Abbaubarkeit der Bestandteile:

Proteine: 25% Fette: 80% Kohlenhydrate: 90%

Primärschlamm

Überschussschlamm

65 - 75%

Abbaubarkeit

25 - 35%

Rohschlamm und nutzbare Energie

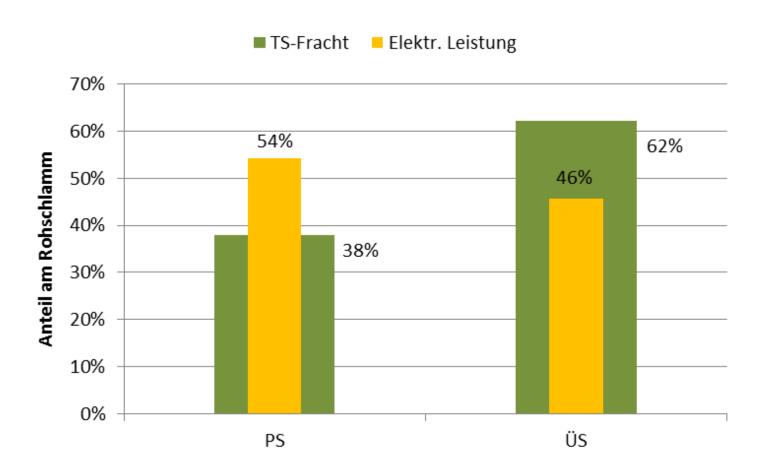


Tabelle 1: Einwohnerspezifische Frachten in g/(E·d), die an 85% der Tage unterschritten werden, ohne Berücksichtigung des Schlammwassers

Parameter	Rohabwasser	Durchflusszeit in der Vorklärung bei Q _t		
		0,5 bis 1,0 h	1,5 bis 2,0 h	
BSB5	60	45	40	
CSB	120	90	80	
TS	70	35	25	
TKN	11	10	10	
P	1,8	1,6	1,6	

Parameter	Anfall	Abbau	PS
	g/E*d	%	g/E*d
CSB	120	25	30
TS	70	50	35

oTS	PS
%	g/E*d
	30,0
70	24,5

1,2 g CSB/g oTS

PS hat einen CSB-Gehalt von 1,6 – 2,0 g CSB/g oTS

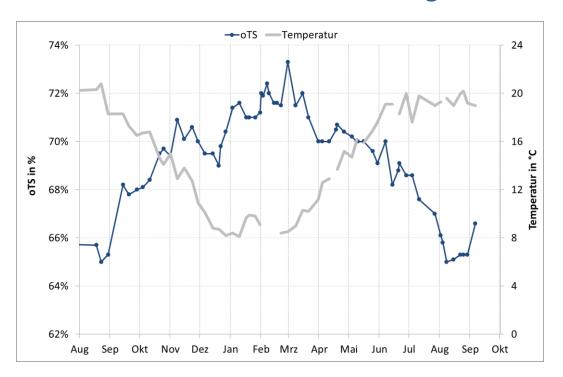
TS = 50 - 60 g TS/E*d

PS = 25 - 30 g TS/E*d

Im Rahmen von Massen- und Energiebilanzen sind Faustwerte stets zu hinterfragen!

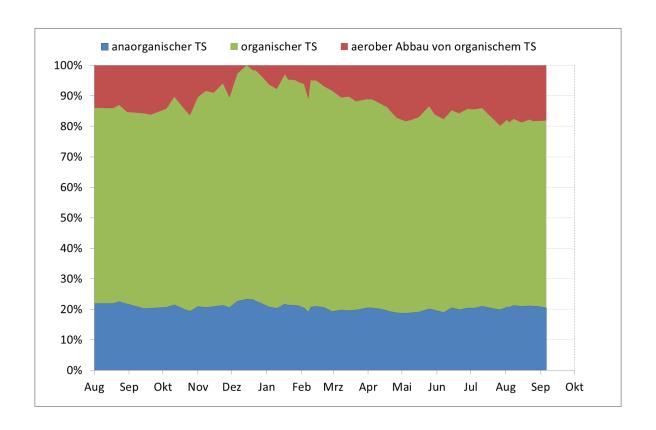
Beispiel: 100.000 EW

PS-Anfall	25	35	g TS /E*d
Elektr. Leistung	200	250	kW



Durch Vorfällung Abscheidegrad von 50% auf 60% steigern

	Sim. Fällung	Vorfällung	
Abscheidegrad	50	60	%
PS-Anfall	25	30	g TS /E*d
Elektr. Leistung	200	220	kW
Steigerung E-Prod.		10	%



Bei gleichbleibendem Schlammalter sinkt der oTS des Belebtschlamms im Sommer bzw. steigt im Winter!

Durch aerobe Schlammstabilisierung wird im Sommer oTS abgebaut und fehlt in der Faulung.

Was kann getan werden, um die simultane aerobe Schlammstabilisierung zu vermeiden?

Beispiel: 100.000 EW

	TS BB	tTS	sp. ÜS	CSBzu	ÜS- Prod.	оТЅ	oTS- Prod.	CSB in ÜS
	kg TS/m³	d	TS/CSB	t CSB/d	t TS/d	%	t oTS/d	t CSB/d
lst	4,0	15	0,40	12	4,8	67	3,2	4,8
Soll	3,5	12	0,44	12	5,3	70	3,7	5,5
Delta					0,5		0,5	0,7

Gegenwärtig aerob abgebaute CSB-Fracht

Gesparte Belüftungsenergie

$$\frac{abbaubare\ CSB-Fracht}{Sauerstoffertrag \cdot \alpha - Wert\ /\ O_2 - S\"{a}ttigungs defizit} = Bel\"{u}ftungsenergie$$

$$\frac{700 \text{ kg CSB/d}}{3,5 \text{ kg O}_2/\text{kWh} \cdot 0,70/1,2} = 334 \text{ kWh/d} = 122.000 \text{ kWh/a}$$

$$\frac{3\% \text{ des Energieverbrauchs der Kläranlage}}{3\% \text{ des Energieverbrauchs der Kläranlage}}$$

Mehr Energieproduktion aus Klärgas

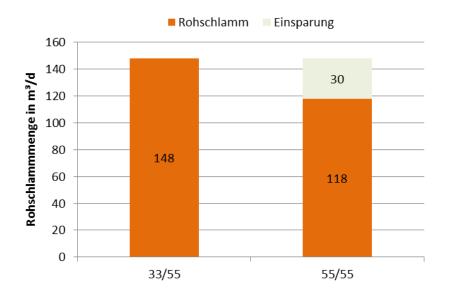
(abbaubare CSB – Fracht) · (CSB – Gehalt CH₄) · (Energiegehalt CH₄) · (elektr. Wirkungsgrad BHKW)

$$700 \text{ kg CSB} \cdot 0,\!35 \, \frac{\text{Nm}^3 \, \text{CH}_4}{\text{kg CSB}} \cdot 10 \, \frac{\text{kWh}}{\text{Nm}^3 \, \text{CH}_4} \cdot 0,\!37\% = 920 \, \text{kWh} \, / \, \text{d} = 336.000 \, \text{kWh} \, / \, \text{a}$$

10% der Energieproduktion der Kläranlage

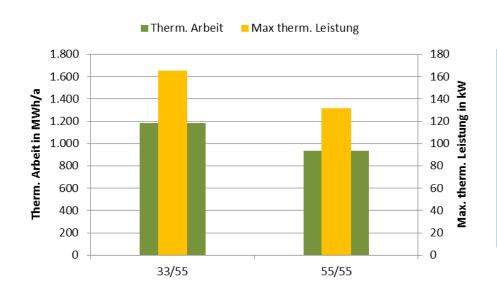
Bedeutung der aeroben Schlammstabilisierung

Doppeleffekt


Für jede kWh_{el}, welche für die Oxidation von Schlammbestandteilen verbraucht werden muss, hätten 2,8 kWh_{el} aus Klärgas produziert werden können.

1. Reduktion der Rohschlammmenge

Eindickung	PS	ÜS	RS
Getrennt [g TS/I]	33	55	44
Gemeinsam [g TS/I]	55	55	55


Beispiel: 100.000 EW

Reduktion der
Rohschlammmenge
um 20%

2. Reduktion der Wärmemenge zum Aufheizen des Rohschlamm

Beispiel: 100.000 EW

Thermischer Gewinn:

Arbeit: 250 MWh/a

Leistung: 34 kW

- Wärmetauscher wird 20% geringer belastet.
- Aus frei werdender WT-Kapazität ergibt sich die Möglichkeit den Faulbehälter als Wärmepuffer zu betreiben.

3. Erhöhung der Faulzeit um ca. 5 Tage

Besonders ÜS ist im Gegensatz zu PS schwerer und daher langsamer zu hydrolysieren.

1% mehr TS-Abbau bedeutet bei 100.000 EW:

Erhöhung (2%)

- der Gasproduktion um 17.000 Nm³/a
- der Stromproduktion um 39 MWh/a
- der Wärmeproduktion um 50 MWh/a

Reduktion (1%)

- der KS-Produktion um 114 t OS/a

4. Reduktion der Laufzeit der Zentrifugen

- Bei einem Durchsatz von 15 m³/h wird die tägliche Laufzeit der Entwässerung um 2 h reduziert.
- Bei einem spez. Stromverbrauch von 1,5 kWh/m³ ergibt sich eine Reduktion des Stromverbrauchs von 16 MWh/a.

Eindickung	33/55	55/55	Delta	Einheit
FS-Volumenstrom	150	120	30	m³/d
Laufzeit	10	8,0	2,0	h/d
Stromverbrauch	82	66	16	MWh/a

5. Erwärmung des Faulschlammes vor der

Entwässerung

- Mit der überschüssigen Wärme kann der Faulschlamm vor der Entwässerung erwärmt werden.
- Dadurch kann eine erhöhter Entwässerungsgrad erzeugt werden.
- Kläranlage Freiburg dauerhaft 2% höheres
 Entwässerungsergebnis

Fachseminar der KOWA MV – 20.02.2014 in Grevesmühlen

Vielen Dank für die Aufmerksamkeit!

